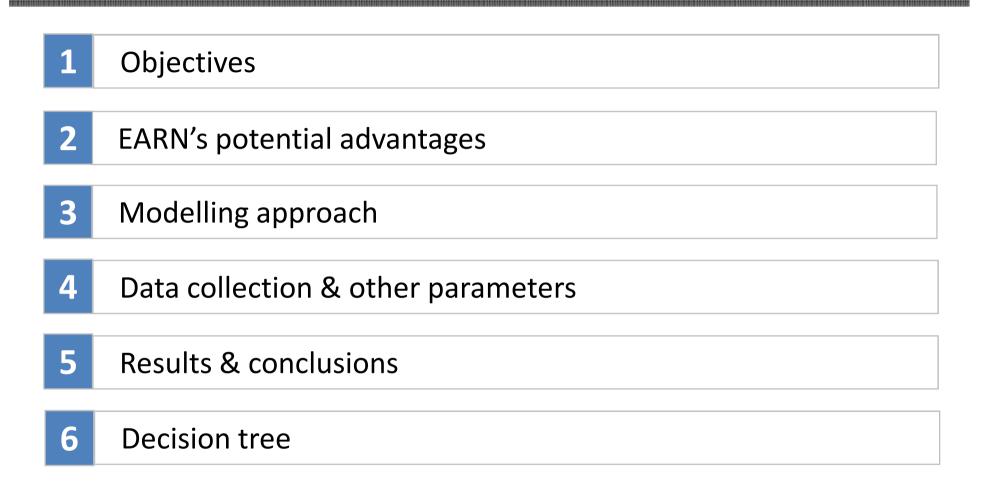
Effects on Availability of Road Network (EARN)

Recycling: Road construction in a post-fossil fuel society

CEDR Transnational Road Research Programme Call 2012



Presentation 4: Modelling for EARN

Matthew Wayman Senior Consultant, TRL Limited, UK

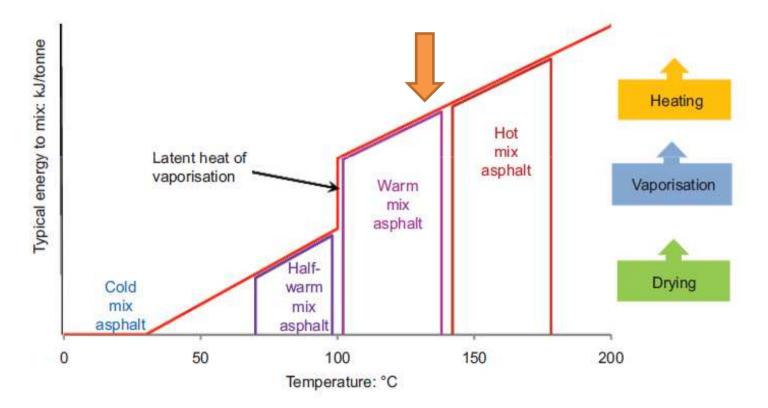
Overview

WP4: Objectives

- Objectives
 - Model how inclusion of reclaimed asphalt in road pavement materials affects performance in environmental and economic terms
 - Select an appropriate modelling approach to allow impacts of recycling (positive or negative) to be quantified
 - Environmental impact: carbon
 - Economic impact: costs as net present value (NPV)
 - Utilise a life cycle based approach
 - To evaluate 'trade-offs' in the life cycle
 - Compile a decision tree to indicate a 'hierarchy of considerations for asphalt recycling'

EARN: a unique opportunity

- Context
 - The asphalt industry was by no means 'making a standing start' with regards to asphalt recycling
 - EARN provided the opportunity to trial double-digit rather than single-digit recycling rates
 - Another sustainability initiative is lower-temperature asphalt
 - Can lower-temperature asphalt and recycling be combined?
 - Can one initiative successfully compliment the other?
 - A unique opportunity
 - EARN provided the opportunity to follow the asphalt production process from start to finish (raw materials to installation)
 - Mixture production could be witnessed first hand and energy consumption directly recorded using meters installed specifically for the trial
 - Having Lagan as a partner made this possible


EARN: a unique opportunity

- Characteristics of recycling
 - Improved resource efficiency
 - Closed-loop recycling avoids the use of primary resources
 - The valuable properties of aggregates and bitumen are preserved into the next life
 - Lower 'embodied' impacts
 - Upstream impacts 'cradle-to-gate' are usually lower for recycled materials than those manufactured from virgin resources
 - Plant requirements
 - There is a need to compensate for a cold RA feed through:
 - Superheating
 - A separate dryer (requiring capital outlay)
 - Another appropriate technology to compensate for moisture
 - ➤ A surfactant additive (CECABASE[™] RT 945) was selected to compensate for moisture in the RA
 - This also facilitated lower-temperature mixing at ~140 °C

EARN: a unique opportunity

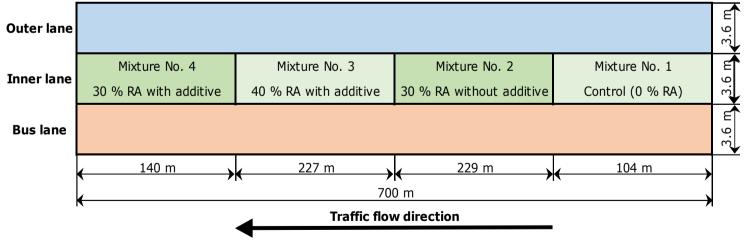
• Lower-temperature asphalt

(Nicholls & James (2011) Literature review of lower temperature asphalt systems. Proceedings of the Institution of Civil Engineers – Construction Materials. London: Thomas Telford)

Modelling approach

- asPECT (the asphalt Pavement Embodied Carbon Tool)
 - Selected to model environmental impacts (CO₂e)
 - Why?
 - Facilitates a life cycle approach
 - The ability to analyse the CO₂e contributions of asphalt mixtures according to specific mixture recipes
 - Accepts specific plant energy consumptions
 - Specific national emissions factors
 - Specific pavement lifetimes for different nations
- A bespoke method was developed to evaluate life cycle costs
 - Using actual costs of components, energy, haulage and estimates of labour
 - A 60 year investigation period
 - A calculation of Net Present Value (NPV) to allow future costs to be compared today (UK Treasury Green Book)
 - Start to year 30: 3.5 % discount rate
 - Year 31 to 60: 3.0 % discount rate

Modelling approach


• The asphalt life cycle

Life	-cycle stage	Description	
1	Raw Material Acquisition	Acquiring raw materials from the natural environment with the input of energy	
2	Raw Material Transport	Transporting acquired raw materials to processing	
3	Raw Material Processing	Crude oil refining, rock crushing and grading, recycled and secondary material reprocessing	•
4	Processed Material Transport	Transporting processed raw materials to site of manufacture of bitumen bound highway components	
5	Road Component Production	Production of bitumen bound mixtures	
6	Material Transport to Site	Delivery of materials to site	
7	Installation	Placing materials at the construction site, mobilisation of plant and labour	
8	Scheme Specific Works	Installation of other specified materials direct to site (e.g. aggregates and geosystems)	
9	Maintenance	Interventions to maintain the road: overlay, surface dressing works, patching, haunching etc.	_
10	End of Life	Excavation and material management, mobilisation of plant and labour	

• The installed sections on the N3

- Collated information:
 - Plant batching records
 - Mixture recipes
 - Metered energy consumption (gas oil and electricity)
 - Laying records
 - Cost data for mixture components, haulage and energy

Page 10

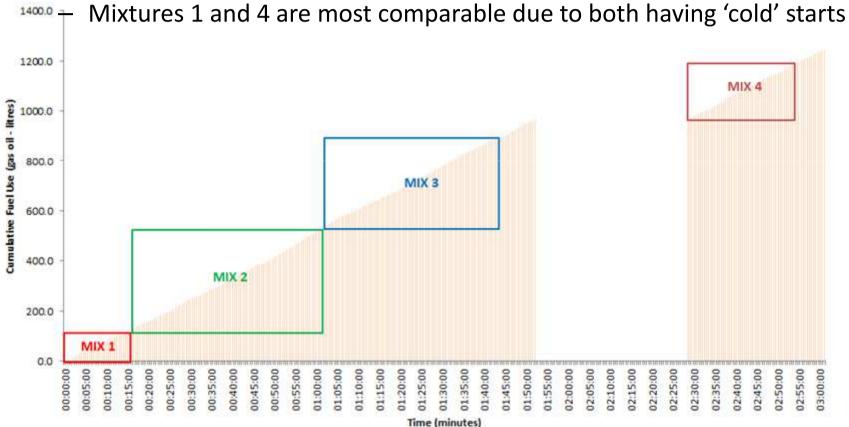
• Cradle-to-gate constituents and costs:

Constituent	kgCO ₂ e/t	Cost €/t
Aggregates	4.4	16.75
Crushed rock fines	4.4	16.75
RA planings	0.31	11.00
Imported filler	4.4	20.00
Polymer-modified bitumen	370	730.87
CECABASE™ additive	2,100	5,583.20



• Mixture recipes

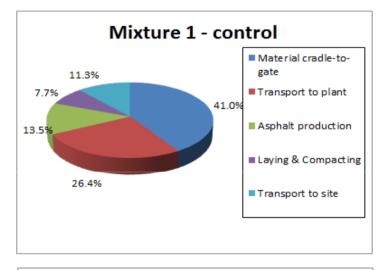
Component	Mixture 1 – SMA 0% RA control		SMA 0% RA Mixture 2 – SMA 30% RA		ıre 3 – RA + itive	Mixture 4 – 30% RA + additive
Aggregates 10 mm (%)		65.06	43.68		34.40	43.89
Crushed rock fines (%)		22.31	17.08		16.99	16.95
RA planings (%)		0.00	28.51		38.20	28.55
Filler (%)		7.05	5.83		5.67	5.69
Polymer-modified bitumen (%)		5.57	4.90		4.71	4.90
CECABASE™ additive (%)		0.00	0.00		0.03	0.03
TOTAL	1	L00.00%	100.00%	:	100.00%	100.00%

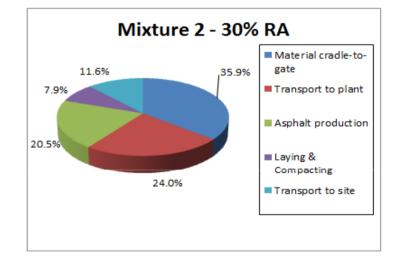


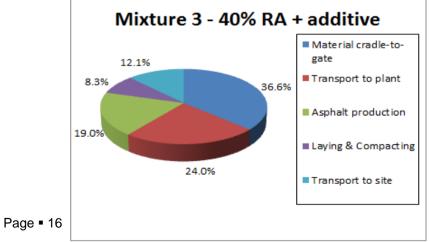
Material sources

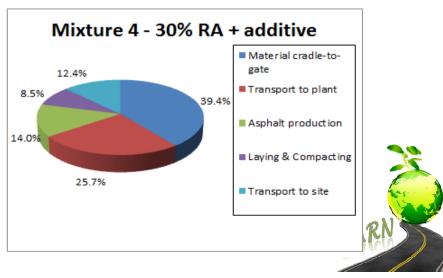
Data collection – asphalt production

• Cumulative energy consumption at plant (gas oil)


• Carbon footprint


- Mixture-related


Component	Mixture 1 (SMA 0 % RA control)	Mixture 2 (SMA 30 % RA)		Mixture 3 (SMA 40 % RA + additive)		Mixture 4 (SMA 30 % RA + additive)	
Cradle-to-gate CO ₂ e footprint (kgCO ₂ e/t)	49,25	47,64	-3.3 %	45,20	-8.2 %	43,97	-10.7 %
Cradle-to-site CO ₂ e footprint (kgCO ₂ e/t)	60,83	59,22	-2.6 %	56,78	-6.7 %	55,54	-8.7 %
Total for the EARN trial installation (kgCO ₂ e) including regulating course and tack coat				18 784			



• Carbon footprint breakdown cradle-to-site

- Design lives (from Deliverable 3)
 - Shown to be quite variable but the effect of this can be evaluated

	Pavement material	Germany (F	GSV, 2001)	Netherland 2012		UK (SWEEP Pavements, 2013)		
Road layer		≥ 300 ESAL/day	< 300 ESAL/day	Right hand Iane	Full width	surface life	structural life	
Surface course	SMA	<u>16</u>	22	<u>11</u>	17	<u>8</u>	-	

Calculated CO₂e footprints for a 1 km single lane stretch over 60 years (absolute figures)

Cradle-to-grave CO ₂ e footprint for 1 km over 60 years (kgCO ₂ e), including tack coat	Mixture 1 (SMA 0 % RA control)	Mixture 30 %			Mixture 4 (SMA 30 % RA + additive)			
UK (8 year service life)	161 493	155 025		148 942		145 927		
Netherlands (11 year service life)	117 118	112 413	-4.0 %	107 990	-7.8 %	105 794	-9.7 %	
Germany (16 year service life)	80 139	76 903		73 863		72 351		

• Costs

- Mixture-related

Component	Mixture 1 (SMA 0 % RA control)	Mixture 2 (SMA 30 % RA)		Mixture 3 (SMA 40 % RA + additive)		Mixture 4 (SMA 30 % RA + additive)	
Cradle-to-gate CO ₂ e footprint (kgCO ₂ e/t)	66,93	58,63	-12.4 %	57,01	-14.8 %	59,45	-11.2 %
Cradle-to-site CO ₂ e footprint (kgCO ₂ e/t)	114,66	106,36	-7.2 %	104,74	-8.7 %	107,18	-6.5 %
Total for the EARN trial installation (kgCO ₂ e) including regulating course and tack coat				72 482			

- Calculated costs for a 1 km single lane stretch over 60 years
 - With a longer service life, costs are lower overall

Cradle-to-grave direct costs for 1 km over 60 years (€), including tack coat	Mixture 1 (SMA 0 % RA control)	Mixture 2 (SMA 30 % RA)		Mixture 3 (SMA 40 % RA + additive)		Mixture 4 (SMA 30 % RA + additive)	
UK (8 year service life)	-393 804	-378 062	-4.0 %	-375 989	-4.5 %	-379 120	-3.7 %
Netherlands (11 year service life)	-258 616	-247 833	-4.2 %	-246 413	-4.7 %	-248 557	-3.9 %
Germany (16 year service life)	-207 451	-198 545	-4.3 %	-197 373	-4.9 %	-199 144	-4.0 %

- Indirect (user) costs for a 1 km single lane stretch over 60 years
 - Is it possible to re-open the road earlier using an LTA?
 - Interventions with HMA are modelled to last eight hours and those with LTA seven hours
 - Cumulative cost associated with this difference in working window over a 60 year asset life

Indirect costs for 1 km over 60 years (€), including tack coat	НМА	LTA		
UK (8 year service life)	-40 377	-35 330		
Netherlands (11 year service life)	-30 993	-27 119	-12.5 %	
Germany (16 year service life)	-22 896	-20 034		

Results summary

- Clear savings are observed for the novel mix designs (Mixtures 2, 3 and 4) relative to the HMA control mixture (Mixture 1) in terms of both CO₂e and cost
 - CO₂e savings range from between 3,3 % to 10,7 % cradle-to-gate and 2,6 % to 8,7 % cradle-to-site on a per tonne basis
 - Mixtures 1 (control) and 4 (30% recycling with additive) provide the most equitable basis for comparison between a hot and lower-temperature mixture containing RA
 - Comparing Mixtures 1 and 4, the savings associated with using the hot mix would be 10,7 % cradle-to-gate and 8,7 % cradle-to-site
 - The cost savings associated with the lower-temperature, high recycled content mixture would be 11,2 % cradle-to-gate and 6,5 % cradle-to-site

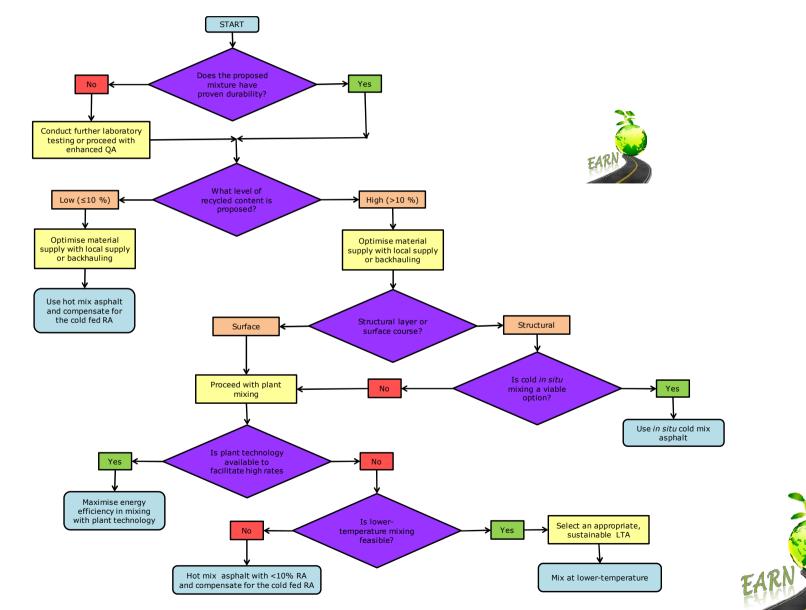
Further analysis

- Some further scenarios were explored:
 - Huge differences were observed for anticipated design lives for the same type of asphalt in different countries
 - SMA surface course in the Netherlands is anticipated to last 37,5 %
 longer than in the UK and 100 % longer in Germany
 - A 37,5 % more durable pavement equates to a saving of 40 tonnes of CO₂e and €131k for the best performing asphalt material over a 1 km section
 - This far exceeds the savings by switching from HMA to LTA with high recycled content

Further analysis

- The effect of backhauling
 - Utilise RA planings directly from the site being remediated (reverse logistics)
 - Trucks used to backhaul planings that can replenish stocks of RA at the asphalt plant
 - Can give up to a further 10,7 % CO_2 e savings

Component	Mixture 1 (SMA 0 % RA control)	Mixture 2 (SMA 30 % RA)	Mixture 3 (SMA 40 % RA + additive)	Mixture 4 (SMA 30 % RA + additive)
Cradle-to-site CO ₂ e footprint - original (kgCO ₂ e/t)	60.83	59.22	56.78	55.54
Cradle-to-site CO ₂ e footprint – backhauling (kgCO ₂ e/t)	58.00	53.97	50.70	50.29
Saving %	-4.7 %	-8.9 %	-10.7 %	-9.5 %



Conclusions

- In general, appreciable CO₂e and cost savings can be observed for the novel asphalt mixtures relative to the control
 - CO₂e savings derived primarily from the recycled content that was incorporated (the primary aim of EARN)
 - Secondary savings derived from energy savings at the plant (through the lower heating and drying energy of the LTA mixtures)
- Recycling asphalt comes with a number of conditions:
 - Durability. Novel mixtures incorporating recycled content must perform to the same or an enhanced level when compared to the conventional hot-mix alternatives because reduced durability has the potential to make a huge negative impact in cost and environmental terms
 - Adequate consideration must also be given to logistics and minimising transport in the life cycle

Hierarchy of considerations for asphalt recycling

Page • 26

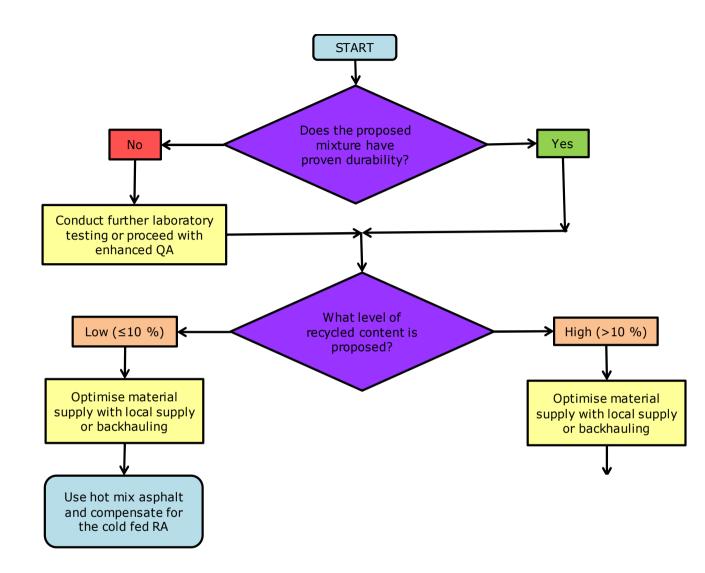
Effects on Availability of Road Network (EARN)

Recycling: Road construction in a post-fossil fuel society

CEDR Conférence Européenne des Directeurs des Routes Conference of European

Conference of European Directors of Roads CEDR Transnational Road Research Programme Call 2012

Thank You


Any questions?

